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Abstract

An epoxy/glass bimaterial beam test configuration has been used to study cooling-induced crack nucleation and

propagation. This effort extends a nucleation criterion, previously applied to tensile-loaded, adhesively bonded butt

joints, to another geometry and type of loading. Loading by thermally induced straining complicates the application of

a nucleation criterion based upon parameters defining the asymptotic stress fields at the interface edge (i.e. at the edge

discontinuity defined by the intersection of the interface and stress-free boundary). In contrast to the tensile-loaded butt

joint, where the magnitude of asymptotic stress state is fully characterized by a single interface-edge stress inten-

sity factor Ka, an additional, non-negligible r-independent regular term Ka0 always exists for thermally induced strains.

In the present work, a direct extension of the previously used nucleation criterion is applied: crack nucleation oc-

curs when Ka ¼ Kac, but with the stipulation that interface-edge toughness Kac depends on Ka0. Published by Elsevier

Science Ltd.
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1. Introduction

Bonded and encapsulated bodies frequently contain sharp edges, and failure generally initiates at an
interface-edge discontinuity. For example, when an epoxy-bonded butt joint is loaded in tension, cracking
will typically originate at the edge discontinuity defined by the intersection of the interface and stress-free
boundary (Reedy and Guess, 1993, 1999). One common approach for estimating the strength of such joints
is to assume that a preexisting crack emanates from the discontinuity, and then use linear elastic fracture
mechanics (LEFM) to determine the load to propagate the crack. The length of the crack used in the
LEFM analysis might be based on a detectable limit in a flaw tolerance assessment, or might possibly be
based on a representative population of flaws introduced during fabrication.

Even when no crack-like flaws are present, extremely high, though very localized, stresses can exist at an
interface edge, a line of geometric and material discontinuity. It is sometimes argued that such stresses have
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little effect on the failure process; that the region dominated by the edge discontinuity is too small, that most
discontinuities are not truly sharp, or that failure is directly related to the presence of preexisting flaws.
Although the stresses associated with an interface edge may have limited impact in many cases, there is
compelling evidence that these stresses can indeed induce failure in some joints. For example, a failure
criterion, based on the magnitude of interface-edge stresses, accurately predicts how the strength of ad-
hesively bonded butt joints varies with bond thickness and adherend stiffness (Reedy and Guess, 1993,
1997, 1999). In these joints the interface-edge stresses govern crack nucleation, and once nucleated, crack
growth is catastrophic.

When viewed asymptotically, an edge discontinuity looks like the apex of a multimaterial wedge. If plane
stress or strain applies, then the asymptotic stress state near the apex of dissimilar, isotropic, linear elastic
bonded wedges (i.e. at an interface edge (Fig. 1) also referred to as an interface corner in a 2D analysis) has
the form

rij ¼
XN
n¼1

Kanrkn�1�rrijnðhÞ þ Ka0�rrij0ðhÞ ði; j ¼ r; hÞ ð1Þ

where r, h refer to a polar coordinate system defined at the interface edge. One or more power-law sin-
gularities of differing strength can exist, and the exponents can be real or complex (Williams, 1952; Bogy,
1968, 1970, 1971; Hein and Erdogan, 1971). The number of stress singularities N, the strength of these
singularities kn � 1, and the angular variation of the stress field associated with each singularity �rrijnðhÞ are
determined by the asymptotic analysis and depend on nondimensional elastic properties (e.g. Dundurs’
parameters (Dundurs, 1969)), the local interface-edge geometry (i.e. wedge angle) and edge boundary
conditions (stress free, fixed, etc.). The stress intensity factors Kan determine the contribution of each sin-
gular term to the stress state in the region of the interface edge (Gradin, 1982; Groth, 1988; Hattori et al.,
1989; Reedy, 1990; Munz and Yang, 1992; Chen and Nisitani, 1993). The Kan depend on global geometry,
applied loads and elastic properties. Although not explicitly shown in Eq. (1), there are certain special
combinations of elastic properties, wedge angles, and edge loads that can also generate logarithmic sin-
gularities (Bogy, 1971; Dempsey, 1995; Chen, 1996).

To date most of our work has utilized an adhesively bonded, tensile-loaded butt joint test geometry that
bonds two relatively rigid, sharp-edged, metal cylinders together with a thin, high-strength epoxy adhesive
layer. For this geometry and loading, the asymptotic stress state is defined by a single power law singular
term, and the strength of the singularity is a real number (Reedy, 1990; Reedy and Guess, 1997). Since a
single interface-edge stress intensity factor Ka1 characterizes the magnitude of the stress state in the region
of the interface-edge of a butt joint, it seems reasonable to assume that failure occurs at a critical value of
Ka1, the interface-edge toughness, Kac. A large body of experimental data shows that a Kac criterion predicts
the observed dependence of joint strength on bond thickness (Reedy and Guess, 1993, 1997, 1999). This
approach is analogous to LEFM, except that the critical value of the stress intensity factor is associated

Fig. 1. LOS test geometry.
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with a material and geometric discontinuity other than a crack. Here we report work aimed at extending
this type of failure analysis to another geometry and type of loading. The test configuration studied casts an
epoxy-layer on top of a glass substrate (Fig. 1). In this layer on substrate (LOS) specimen, slow cooling
induces edge cracking.

Loading by thermally induced straining complicates the application of a failure criterion based on in-
terface-edge stress fields. The tensile-loaded butt joint and the LOS specimen share the same asymptotic
problem: two edge-bonded quarter planes. Consequently, the asymptotic solutions for both types of
specimen include a single, power-law singular term. Furthermore, since the strength of the singularity is
determined by the asymptotic problem, the strength of the singularity, for a given bimaterial combination
and lateral constraint (e.g. plane strain) is the same for both specimens. However, an asymptotic
description that includes only the singular term may fail to accurately describe the stress state over a
physically significant region about the interface edge when thermal straining occurs. In contrast to the
tensile-loaded butt joint, an r-independent regular term Ka0�rrij0 ðhÞ (Eq. (1)) always exists for thermally
induced strains (Munz and Yang, 1993; Reedy, 1993). Consequently, it appears unlikely that nucleation is
characterized by only a critical Ka1 value; the effect of Ka0 must also be considered. Once a crack is nucleated
at an edge discontinuity, it might grow stably with increasing load until it reaches a critical length. On the
other hand, the load to nucleate cracking might exceed that needed to propagate the nucleated crack.
Cracking is then catastrophic; the ultimate failure load is coincident with the load to nucleate cracking. In
either case, well-developed fracture mechanics techniques can be used to assess crack growth tendencies.

2. Layer on substrate experiments

A set of 18 LOS samples (Fig. 1, 2L ¼ 123 mm, 2W ¼ 6:5 mm), have been tested to determine how
epoxy-layer thickness affects the temperature that nucleates cracking in a cooled LOS specimen. The
nominal thickness of the epoxy-layer ranged from 1.6 to 6.5 mm (actual thickness was measured after
fabrication and ranged from 1 to 6 mm), and the ratio of the epoxy-to-glass thickness, h1=h2, was fixed at
0.125. This thickness ratio limits bimaterial beam bending, and the epoxy-layer behaves like a thin film on a
thick substrate. A borosilicate float glass was used for the substrate. The substrate’s 6.5-mm-wide surfaces
were ground with a 20-lm grit wheel, and all edges were left sharp. After cleaning the glass surfaces, the
glass substrate was placed at the bottom of a snugly fitted RTV mold, with the cavity depth defining the
thickness of the epoxy-layer. The top portion of the mold was filled with a slightly modified version of 3M’s
EC2216 epoxy adhesive (mix ratio of five parts B to seven parts A, with 2% cabosil added to alter flow
characteristics). The epoxy was cured at 65 �C for 14 h followed by 70 �C for 4 h. After cure, the vertical
edges on one end of the LOS sample (as indicated in Fig. 1) were ground to a radius of 0.5 mm. This was
done to remove 3D interface corners (e.g., a point defined by the intersection two perpendicular edges and a
mutually perpendicular interface) since they could possibly influence experimental results (Labossiere and
Dunn, 2001). To assure that fracture always initiated on the end of the LOS specimen being watched, a
drop of epoxy was placed over the interface edge on the other end. All samples were stored in a desiccated
environment prior to testing.

The elastic properties of the glass and epoxy are listed in Table 1. Since the epoxy’s glass transition
temperature is 15 �C, cooling from the cure temperature induces little residual stress. Although DMA
modulus and TMA thermal coefficient of expansion data indicate that E and aT vary with temperature over
the temperature range of interest, (23 to �60 �C), their product, EaT, was found to be essentially inde-
pendent of temperature over this same temperature range. Note that although the epoxy properties listed in
Table 1 were measured at �60 �C, their product is temperature independent. Since cooling induced stress is
proportional to the product EaT, an analysis using the properties listed in Table 1 is applicable to the entire
temperature range of interest. This was confirmed by performing cooling induced, bimaterial beam bending
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tests. Predicted and measured strains were in good agreement when temperature change was defined with
respect to a 10 �C reference temperature.

A liquid-nitrogen-cooled environmental chamber was used to test the LOS specimens. The specimens
were cooled at a rate of 1 �C/min. The chamber contained a viewing port, and a video camera with a
macrolens recorded the test. There is some limited evidence that very small, isolated, point-like flaws and
perhaps small separations developed along the straight interface edge as the temperature decreased. Our
images lacked the magnification needed to resolve this level of detail. Even if these edge flaws do exist, they
did not grow, nor were they associated in any direct way with the one large crack that eventually formed. In
15 of the 18 tests, the crack that eventually grew and propagated could be clearly associated with a small,
isolated flaw that nucleated near the curved portion of the interface edge (i.e., in the vicinity of one of the
rounded edges, Fig. 1). This flaw immediately kinked into the glass. With continued cooling, the crack
progressed along and across the specimen, eventually following a path that was roughly parallel to the
interface. The propagating crack was typically several bond thicknesses long by the time the temperature
had decreased an additional 5 �C below that at nucleation. The crack in a LOS specimen with a relatively
thick epoxy-layer (>3 mm) tended to run rapidly along the specimen length once the crack front was fully
developed. A shard of glass, with a thickness of roughly one-quarter to one-half of that of the epoxy-layer,
remained attached to the epoxy-layer. Fig. 2 plots the temperature change �DT at crack nucleation versus
epoxy-layer thickness (�DT is plotted since DT , the nucleation temperature minus the 10 �C reference

Fig. 2. Change in temperature to nucleate crack growth vs. epoxy-layer thickness (note �DT is plotted, where DT equals the nucleation

temperature minus the 10 �C reference temperature).

Table 1

LOS specimen material properties (m is Poisson’s ratio)

E (GPa) m aT (/�C)

Epoxya 4 0.25 65e� 6

Glass 63 0.20 3e� 6

a Properties at �60 �C.
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temperature, is a negative number). The magnitude of �DT decreases as the epoxy thickness increases, and
on this log–log plot, the decrease is approximately linear with a slope of �0:18.

3. Layer on substrate Ka and Ka0

This section presents the Ka and Ka0 calibrations used to determine the critical Ka and Ka0 values at crack
nucleation from the measured LOS test data. These calibrations relate the value Ka and Ka0 to temperature
change, specimen geometry, and material properties. Relations based on plane stress and plane strain
assumptions are presented first, and the importance of including the r-independent Ka0 in describing in-
terfacial normal stress distributions is assessed. The plane stress and strain calibrations are applicable to the
LOS test geometry in only some approximate way, and the applicability of these relations depends on
factors such as the epoxy height/width ratio. Furthermore, in the region of the rounded edge, where failure
was observed to initiate, the rounded edge itself constrains the deformation. For that reason, full 3D
calculations (glass modeled as rigid) were also carried out to better understand the applicability of the plane
stress and strain calibrations, and also to suggest corrections to these relationships.

3.1. Calibrations for plane stress and plane strain

Based upon dimensional considerations and linearity with applied load, the stress intensity factor Ka

must have the form (dropping the subscript on Ka and k in Eq. (1) since N ¼ 1)

Ka ¼ r�h1�k
1 Aða; b; h2=h1;L=h1Þ ð2Þ

where r� is a characteristic stress, h1 is a characteristic length, and the function A depends on nondi-
mensional material parameters (i.e. Dundurs’ elastic mismatch parameters, a and b) and geometric pa-
rameters (e.g. ratio of layer heights h1=h2). As noted above, the strength of the stress singularity, k � 1, is
known from the asymptotic analysis. Consequently, specifying the choices for characteristic stress and
length and prescribing the functional dependence of A on all relevant nondimensional geometric and elastic
parameters defines the Ka calibration. A convenient choice for the characteristic stress r� is the constraint
stress developed in a thin compliant layer on a thick, stiff substrate

r� ¼ �E1½aT1 � aT2�DT plane stress ð3Þ

r� ¼ � E1

ð1� m21Þ
½ð1þ m1ÞaT1 � ð1þ m2ÞaT2�DT plane strain ð4Þ

where E is Young’s modulus and aT is the coefficient of thermal expansion (subscript 1 for epoxy, 2 for
glass) and DT is negative for cooling. Likewise a convenient choice for the characteristic length h1 is the
thickness of the epoxy-layer.

The known form of the asymptotic solution was matched with detailed plane stress and plane strain
finite element results to determine the value of the function A for epoxy/glass and epoxy/rigid (rigid material
has aT ¼ 0) LOS specimens when h1=h2 	 1 and h1=L 	 1, and using the material properties listed in Table
1. Since E1h1 	 E2h2, bimaterial beam bending is negligible, and the epoxy-layer acts as if it is thin (i.e.,
there is essentially no through-the-thickness variation in stress in the epoxy-layer when sufficiently far from
the stress-free edge). Furthermore, when h1 is small relative to both h2 and L, h1 can be considered to be the
only finite length scale and consequently the function A depends only on the elastic mismatch parameters.
Table 2 lists the strength k � 1 of the asymptotic stress singularity and the value of the function A for
epoxy/glass and epoxy/rigid LOS specimens for both plane stress and plane strain. These A values are
within a couple of percent of those determined by utilizing a previously published calibration for butt joints
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in which the more compliant material is thin (Tilscher et al., 1995). The plane strain LOS Ka calibration for
the glass/epoxy LOS is

Ka ¼ �0:785 DTh0:1981 ðMPamm0:198Þ plane strain ð5Þ

where DT is in �C and h1 is in mm (substitute Eq. (4) and Table 2 values into Eq. (2)).
The r-independent regular term Ka0�rrij0ðhÞ (Eq. (1)) for two bonded quarter planes in plane stress or plane

strain simply defines a uniaxial stress parallel to the stress-free edge (i.e. normal to the interface) with
magnitude (Tilscher et al., 1995)

Ka0 ¼
E1½aT1 � aT2�DT
m1 � m2ðE1=E2Þ

plane stress ð6Þ

Ka0 ¼
E1½ð1þ m1ÞaT1 � ð1þ m2ÞaT2�DT
m1ð1þ m1Þ � m2ð1þ m2ÞðE1=E2Þ

plane strain ð7Þ

where �rrhh0ð0Þ has been defined to have a value of 1. Note that Ka0 does not depend on layer thickness, and
for an epoxy/glass LOS in plane strain

Ka0 ¼ 1:045DT ðMPaÞ plane strain ð8Þ

where DT is in �C. Ka and Ka0 calibrations for a rigid substrate (material 2) are obtained by setting aT2 and
E1=E2 to zero in Eqs. (3), (4), (6), and (7).

The origin of the r-independent asymptotic term can be understood for the simple case of bonded rigid
(aT ¼ 0) and elastic quarter planes subjected to a uniform temperature change. If the epoxy-layer were not
attached to the substrate, a temperature change of DT would induce expansion relative to the rigid sub-
strate. If plane stress is assumed and m > 0, the rigid substrate limit of Eq. (6) defines a uniaxial stress
parallel to the stress-free edge (i.e., normal to the interface) of magnitude

Ka0 ¼
E1aT1 DT

m1
plane stress and plane strain ð9Þ

that negates the thermally induced strain that is parallel to the interface and consequently makes the elastic
quarter plane compatible with the rigid substrate. This stress is also consistent with the stress-free boundary
condition. Consequently, the uniform, interface normal stress state defined by Eq. (9) is the solution of the
asymptotic problem.

3.2. LOS interfacial stress distributions

Fig. 3 compares plane strain finite element and interface-edge asymptotic solutions for interfacial stress
in a LOS specimen. Note that the asymptotic function �rrij1ðhÞ defining the angular variation in the singular

Table 2

Parameters defining plane stress and plane strain singular asymptotic interface-edge solutions for LOS specimen

Materials a b k � 1 Aða;bÞ
Epoxy/rigida �1.000 �0.375 �0.219 2.82

Epoxy/rigidb �1.000 �0.333 �0.255 2.06

Epoxy/glassa �0.881 �0.329 �0.165 3.30

Epoxy/glassb �0.878 �0.290 �0.198 2.37

a Plane stress.
b Plane strain.

330 E.D. Reedy Jr., T.R. Guess / International Journal of Solids and Structures 39 (2002) 325–340



stress (Eq. (1)) has been defined to have a value of 1.00 for interfacial normal stress, rn, and has a value of
0.225 for interfacial shear stress, s. The asymptotic solution for interfacial normal stress is simply

rn ¼ Kark�1 þ Ka0 ð10Þ

where Ka and Ka0 are defined by Eqs. (5) and (8), respectively, and where r is distance from the stress-free
edge. Fig. 3 clearly shows that the asymptotic solution rn must include the r-independent Ka0 term to
accurately describe the rn stress distribution over a physically significant distance. With the inclusion of the
Ka0 term, the asymptotic solution for rn and interfacial shear stress, s, are in very good agreement with
finite element results when rn and s > r� (i.e., when within the region of elevated stress). The finite element
and asymptotic solutions for rn and s are within 5% for r=h1 < 0:05 and r=h1 < 0:15, respectively.

A comparison of plane stress finite element and interface-edge asymptotic solutions is qualitatively
similar to the plane strain results shown in Fig. 3. Note, however, that the interfacial tension generated in a
yield zone embedded within an elastic, interface-edge stress field is generally higher in plane strain than in
plane stress. A plane strain, slip-line theory solution for the asymptotic stress state developed at the in-
terface-edge of a tensile-loaded butt joint with rigid adherends and a rigid-perfectly plastic adhesive layer
predicts a hydrostatic interfacial tension of 1.5 ry (Reedy and Guess, 1996). Plane strain finite element
results for a adhesively bonded, rigid-adherend butt joint verify that an interfacial tension of 1.5 ry occurs
within the yield zone when an elastic–perfectly plastic adhesive model is used (Reedy and Guess, 1996;
Reedy, 2000). In contrast, a plane stress finite element analysis of the same joint shows that the hydrostatic
tension within the yield zone is reduced to a level of about 1.0 ry.

3.3. 3D geometric effects on LOS asymptotic stress fields

Three-dimensional (3D) finite element calculations were performed to assess how the asymptotic in-
terface-edge stress state in a LOS test specimen differs from that determined by a plane stress or plane strain

Fig. 3. Plane strain finite element solutions for interfacial normal stress rn and interfacial shear stress s in a uniformly cooled, epoxy/

glass LOS specimen are compared with asymptotic (asym) solutions.
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analysis. To make the 3D analysis tractable, the idealized problem of an epoxy-layer on a rigid substrate
was analyzed (i.e., the bottom edge of the epoxy-layer was fixed to model the presence of the rigid sub-
strate). Furthermore, by enforcing symmetry conditions, only one-quarter of the LOS specimen had to be
modeled, and the length of the LOS specimen was truncated at L ¼ 4h1 (Fig. 1). The plane stress and strain
results for the epoxy/glass LOS indicate that at a distance equal to four times the epoxy-layer thickness
away from the stress-free edge, the axial stress (i.e., rxx as defined by the coordinate system shown in Fig. 1)
approaches the limit value found in an infinitely long LOS (the calculated rxx is within 5% of the expected
limit value). Accordingly, the interface-edge stress state calculated using a model with L ¼ 4h1 should
reasonably approximate the long adherend limit. Three models, with differing epoxy-layer height, were
analyzed (h1 ¼ 1, 3, or 6 mm, 2L ¼ 8, 24, and 48 mm, and 2W ¼ 6:5 mm; see Fig. 4). As shown in Fig. 4,
each of the three models incorporates the 0.5 mm radius R found on the vertical edges of the tested LOS
specimens (Fig. 1). Eight-node linear brick elements were use in the analysis, and the meshes were suffi-
ciently refined in the region of the interface-edge to resolve the singular stress fields (characteristic element
length-to-layer thickness ratio of 0.017 at the interface-edge).

Fig. 5 compares 3D finite element results for interfacial normal stress along the LOS specimen’s lon-
gitudinal centerline with asymptotic plane stress and plane strain solutions (parameters used in the epoxy/
rigid asymptotic solutions are listed in Table 2). Note that in Fig. 5, distance r is measured from the stress-
free edge and finite element results are plotted for three different epoxy-layer thicknesses. A comparison of
the plane stress and plane strain asymptotic solutions shows that, at any given r=h1, the stress level is higher
for plane strain, suggesting that this is the harsher condition. The calculated rn stress distributions for
specimens with h1 ¼ 6 and 3 mm (W =h1 ¼ 0:54 and 1.08, respectively) are nearly identical to the plane stress
asymptotic stress distribution (Fig. 5). On the other hand when h1 ¼ 1 mm (W =h1 ¼ 3:25), the calculated
stress distribution is instead most like the plane strain asymptotic stress distribution. As the epoxy’s width-
to-height ratio increases, the solution transitions from a plane stress-like condition to a plane strain-like
condition. Recall that at a distance equal to four times the epoxy-layer thickness away from the stress-free
edge, the stress state approaches the limit value found in an infinitely long LOS. Consequently, when
W =h1 ¼ 3:25, and since the substrate is rigid and L=h1 ¼ 4:00, a condition approximating plane strain is
expected.

Fig. 4. Finite element meshes used in 3D analysis of a uniformly cooled, epoxy/rigid LOS specimen (deformed mesh shown).
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Fig. 6 plots interfacial normal stress along the line bisecting the LOS’s rounded edge (along a radius of
the circle defining the rounded edge, at an angle of 45� from the longitudinal axis (Fig. 4)). The calculated
rn stress distributions for h1 ¼ 6 (W =h1 ¼ 0:54) is nearly identical to the plane strain asymptotic stress

Fig. 5. Comparison of 3D finite element solutions for rn along the LOS specimen’s longitudinal center line with asymptotic plane stress

and plane strain solutions.

Fig. 6. Comparison of 3D finite element solutions for rn along the line bisecting the LOS specimen’s rounded edge with asymptotic

plane stress and plane strain solutions.
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distribution, while those for h1 ¼ 3 and 1 mm (W =h1 ¼ 1:08 and 3.25, respectively) lie above the plane strain
result. The existence of plane strain-like conditions in the region of a rounded edge seems reasonable since
the rounded edge itself constrains deformation. For example, consider a thin epoxy-layer on a rigid, cir-
cular substrate. Asymptotic interface-edge stress fields for this axisymmetric geometry will approach the
plane strain limit as the epoxy layer-to-disk radius ratio decreases.

Since calculated asymptotic stress distributions at the rounded LOS edge are so similar to the plane
strain asymptotic result, the 3D rounded edge stress distributions are expected to have the same asymptotic
form (Eq. (10)). The r-independent term Ka0, as defined in Eq. (9) for plane stress and plane strain, should
apply to the 3D LOS. As discussed in Section 3, Ka0 simply corresponds to a uniaxial stress parallel to the
stress-free edge that negates the thermally induced strain, and indeed Ka0 has the same value in plane stress
and plane strain. If the asymptotic stress distribution at the rounded edge has the same form as the plane
strain asymptotic stress distribution, then in the region dominated by the asymptotic field, a plot of
logðrn � Ka0Þ vs. logðrÞ will be a straight line with a slope equal to the strength of the plane strain stress
singularity (Eq. (10) and Table 2). Log–log plots of the 3D calculated results shown in Fig. 6 do display the
expected linear dependence as the interface-edge is approached. Furthermore, the values of the calculated
initial slopes (�0.248, �0:245, and �0.245 for h1 ¼ 1, 3, and 6 mm, respectively) are in good agreement
with the theoretical, plane strain asymptotic result (�0.255). It is also possible to determine the value of Ka

from the log–log plots and these values can then be used to define Ka calibrations for stress along the line
bisecting the LOS’s rounded edge. Guided by the general form of Ka (Eq. (2)), the rounded corner Ka will be
defined in the same way as the plane strain Ka (i.e., r� is the rigid substrate limit of Eq. (4)), but the function
A will be modified to include the effect of the rounded edge and h1=W . Table 3 shows that the value of the
function A, defined for stress along the line bisecting the rounded edge, varies in a nearly linear manner with
h1=W (i.e., rounded edge A/plane strain A ¼ 1:1040� 0:072h1=W ).

Results for the epoxy/rigid LOS suggests that the function A, used in the Ka calibration for interfacial
stress on line bisecting rounded edge LOS, can be defined as a multiplicative correction factor to the plane
strain A. This correction factor depends linearly on h1=W (for a fixed R=W , here R=W ¼ 0:154). Since
epoxy/glass can be approximated as epoxy/rigid (glass and epoxy Young’s modulus differ by a factor of 15,
Table 1), it seems reasonable to apply the epoxy/rigid correction to the epoxy/glass plane strain A to
produce an approximate calibration for Ka applicable to the rounded edge of an epoxy/glass LOS.
Therefore, after modifying Eq. (5)

Ka ¼ �0:785 1:104

�
� 0:072

h1
W

�
DTh0:1981 ðMPamm0:198Þ rounded edge ð11Þ

for L=W P 4, R=W ¼ 0:154 and where DT is in �C and h1 is in mm. Note that Ka0 at the rounded edge has
the same value as it does in plane strain (Eq. (8)).

Table 3

Parameters defining singular asymptotic interface-edge solutions for stress along a line that bisects the rounded edge of an epoxy/rigid

LOS specimen (3D model)

h1 (mm) L=h1 W =h1 R=h1 k � 1 Rounded

edge A

Rounded

edge A=Plane

strain A

1 4.00 3.25 0.500 �0.255 2.22 1.08

3 4.00 1.08 0.167 �0.255 2.14 1.04

6 4.00 0.54 0.083 �0.255 2.00 0.97
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4. Ka vs. Ka0 crack nucleation criterion

The parameters defining the asymptotic, interface-edge stress field are a potential basis for a crack
nucleation criterion provided that (1) cracking actually nucleates at the interface edge, (2) the edge appears
sharp on a length scale commensurate with that of the asymptotic stress field, and (3) the nucleation zone,
as well as any surrounding yield-like zone, is deeply embedded within the region dominated by the as-
ymptotic stress state. When these conditions are met, Ka and Ka0 uniquely define of the intensity of the stress
field at the edge, independent of global geometry and details of the applied loading. These restrictions are
analogous to the familiar small-scale yielding requirement of linear elastic fracture mechanics.

The LOS test data can be used to assess the applicability of a crack nucleation criterion based upon
measured Ka and Ka0 values at nucleation. Fig. 2 shows that the DT at crack nucleation varies with layer
thickness, h1. Each DT , h1 pair defines a critical Ka value and an associated Ka0. In the present work, a rather
simple nucleation criterion is considered: it is assumed that crack nucleation occurs when Ka ¼ Kac, with the
stipulation that interface-edge toughness Kac depends on Ka0. Since cracking in an epoxy/glass LOS spec-
imen nucleates at the rounded interface edge, the rounded edge Ka calibration (Eq. (11)) is used in con-
junction with the Fig. 2 data to determine Kac values while Eq. (8) is used to determine the associated value
of Ka0. Fig. 7 clearly suggests that there is a moderate increase in Kac as Ka0 becomes increasingly com-
pressive (�Ka0 is plotted since Ka0 is compressive for cooling). This is the expected trend since a higher Kac

would be needed to compensate for the addition of an increasingly compressive Ka0. Although the scatter in
the data makes it difficult to define the dependence of Kac on Ka0, a least squares fit of the plotted data
indicates that

Kac ¼ 21:5� 0:42Ka0 ðMPamm0:198Þ ð12Þ

where Ka0 is in MPa.
For a particular epoxy/glass LOS specimen geometry (i.e., for a given h1 and h1=W ), the temperature at

crack nucleation can be predicted by setting Eq. (11) equal to Eq. (12) (i.e., Ka ¼ Kac), substituting Eq. (8)

Fig. 7. Kac vs. the associated Ka0 (using the rounded interface-edge Ka calibration).
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for Ka0, and then solving for DT . For example, Table 4 uses Eq. (12) to predict DT at crack nucleation for
h1 ¼ 1, 3, and 6 mm. Table 4 also lists the associated Kac and Ka0 values, and the asymptotic rn distributions
corresponding to these parameters (i.e., substituting these values into Eq. (10)) are plotted in Fig. 8. The
experimentally determined Kac relationship (Eq. (12)) gives rise to nearly identical rn distributions for
h1 ¼ 1, 3, and 6 mm. Since the crack nucleation process is almost certainly dependent on rn at the interface
edge, this consistency in rn distributions lends support to a nucleation criterion that uses a Ka0-dependent,
interface-edge toughness.

As an aside, the use of the rounded, interface-edge Ka calibration, as determined by 3D finite element
analysis, is a necessary element in the determination of the crack nucleation criterion. If the 2D plane strain
Ka calibration (Eq. (5)) is used instead, the resulting Kac vs. Ka0 data show no definitive trend (Fig. 9). These
interface toughness values are reasonably consistent (average Kac ¼ 37:6 MPamm0:20, with a standard
deviation/average of 0.07). Consequently, it might seem reasonable to conclude that Ka ¼ Kac (where Ka is
the plane strain calibration and Kac is a Ka0-independent constant) is a valid crack nucleation criterion.
However, a nucleation criterion based upon the plane strain Ka calibration and Kac ¼ 37:6 MPamm0:20 give
rise to rn distributions for h1 ¼ 1, 3, and 6 mm that lack consistency (Fig. 10; for each h1, Eq. (5) is solved
for DT , Ka0 is determined from Eq. (8), and rn is determined using Eq. (10)).

Table 4

Temperature change to nucleate cracking consistent with Ka ¼ Kac ¼ 21:5� 0:42Ka0 nucleation criterion for a range of epoxy-layer

thickness

h1 (mm) DT (�C) Ka0 (MPa) Kac (MPamm0:20)

1 �52.4 �54.8 44.5

3 �37.5 �39.2 38.0

6 �33.2 �34.7 36.1

Fig. 8. Asymptotic rn when Ka ¼ Kac nucleation criterion is satisfied (using rounded interface-edge Ka calibration and Kac ¼
21:5–0:42Ka0 MPamm0:20).
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5. Crack propagation

There is a well-developed understanding of steady-state substrate cracking in pre-tensioned thin film/
brittle substrate bimaterials (Thouless et al., 1987; Drory et al., 1988; Hu et al., 1988; Suo and Hutchinson,
1989; Chiao and Clarke, 1990). The key observation is that the crack follows a trajectory parallel to the
interface with a depth governed by a KII ¼ 0 criterion (Thouless et al., 1987). The steady-state cracking depth

Fig. 9. Kac vs. the associated Ka0 (using the plane strain Ka calibration).

Fig. 10. Asymptotic rn when Ka ¼ Kac nucleation criterion is satisfied (using the plane strain Ka calibration and Kac ¼ 37:6

MPamm0:20).
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and the associated energy release rate in an infinitely long bimaterial can be determined as a function of film/
substrate thickness, elastic properties, and temperature change using formulas published by Suo and
Hutchinson (1989). Recall that LOS specimens have a nominal epoxy-to-glass thickness ratio of 0.125 and
an epoxy thickness that ranges from 1 to 6 mm. For these geometric parameters and the elastic properties
listed in Table 1,G=GI 
 0:8, whereG is the plane stress energy release rate at the steady-state cracking depth
and GI is the plane stress energy release rate for a semi-infinite interfacial crack between a thin film and a
thick substrate (GI ¼ r�2h1=2E1 where the plane stress constraint stress r� is defined in Eq. (3)). Fig. 11 plots
the energy release rate corresponding to the calculated steady-state crack depth at the DT that the nucleated
crack was observed to be at least several bond thicknesses long (typically at a DT 5 �C below that at nu-
cleation) vs. epoxy layer thickness. Note thatG is normalized by the borosilicate glass’sGc, whereGc ¼ 8 J/m2

(Mecholsky et al., 1974). The magnitude of the DT required to nucleate cracking in the LOS tests exceeds that
required for steady-state substrate cracking. Furthermore, G=Gc ratio increases rapidly with epoxy-layer
thickness. This result is consistent with experimental observation; the crack in a LOS specimen with a relatively
thick epoxy-layer (>3 mm) ran rapidly along the specimen length once the crack front was fully developed.

6. Conclusions

A crack nucleation criterion that had been previously applied to tensile-loaded, adhesively bonded butt
joints has been extended and applied to another geometry and type of loading. The test configuration casts
an epoxy-layer on top of a glass substrate, and the specimen is loaded by slow cooling. Although the
following observations apply specifically to the epoxy/glass bimaterial LOS specimens tested in the present
study, these results may also apply to other bimaterial combinations that generate tensile, interface-edge
normal stress via cooling of a relatively thin, compliant layer on a stiff, brittle substrate.

• Slow cooling nucleates cracking along the portion of the interface edge where a 0.5 mm radius provides a
transition between the lateral and longitudinal LOS interface edges.

Fig. 11. G=Gc at the DT when the nucleated crack was observed to be at least several bond thicknesses long vs. epoxy-layer thickness.
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• The temperature change that nucleates cracking depends on the epoxy-layer thickness: the temperature
change for nucleation increased by 40% as the epoxy-layer thickness was decreased from 6 to 1 mm.

• The asymptotic solution for interfacial normal stress rn must include the r-independent Ka0 term to ac-
curately describe the rn stress distribution over a physically significant distance.

• A Ka calibration applicable to the rounded edge of an epoxy/glass LOS can be defined as a correction
factor applied to the plane strain calibration.

• Crack nucleation occurs when Ka ¼ Kac, where interface-edge toughness Kac depends on Ka0.
• The experimentally determined Kac vs. Ka0 relation gives rise to nearly identical rn distributions in LOS

specimens with 1-, 3-, and 6-mm thick epoxy-layers.
• The magnitude of the DT required to nucleate cracking in the LOS tests exceeds that required for steady-

state substrate cracking.
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